Correlación: Transitividad
En esta entrada se explica la transitividad del coeficiente de correlación de Pearson, así como la malinterpretación común que suele hacerse sobre dicha propiedad, pudiendo llevar a conclusiones erróneas.
Antes de comenzar la lectura de esta entrada, me gustaría pedirte que realizases el siguiente test, que se repetirá de manera similar al final de la entrada, con el objetivo de que puedas darte cuenta las creencias erróneas que tienes actualmente y de si has adquirido conocimientos nuevos tras la lectura de la entrada.
Imaginemos que sabemos que existe una relación entre la fuerza de prensión manual máxima (X) y la fuerza en rotación externa isométrica máxima de hombro (Y), y que existe una relación entre dicha rotación externa isométrica máxima (Y) y la discapacidad del hombro (Z). En base a ello, decidimos empezar a usar la fuerza de prensión manual como estimador de la discapacidad del hombro. En este razonamiento estaríamos haciendo uso de la transitividad, como X se relaciona con Y, y Y se relaciona con Z, entonces X se relaciona con Z, es decir, hay una «transmisión de la correlación».
Para poder entender la transitividad aplicada a las correlaciones, debemos conocer antes el concepto del coeficiente de determinación (R2) y el porcentaje de variabilidad explicada. A modo resumen simple, en función del valor del coeficiente de correlación de Pearson (r):
- r = 0, no hay correlación.
- r = 1, correlación perfecta positiva.
- r = -1, correlación perfecta negativa.
Si elevamos dicho coeficiente de correlación al cuadrado, obtenemos el coeficiente de determinación (R2), que indica el porcentaje de variabilidad que podemos explicar de una variable a través de otra, por ejemplo si tenemos un coeficiente de Pearson de 0.50, el coeficiente de determinación sería R2 = 0.25, es decir, un 25% de variabilidad explicada. Este concepto puede representarse gráficamente con diagramas de Venn, que facilitarán entender el concepto de transitividad de las correlaciones. Si el área de ambos rectángulos es de 1, un R2 de 0.25 implica que hay un solapamiento del 25% del área los rectángulos.
Imaginemos ahora que tenemos tres variables en lugar de dos, con los siguientes valores de R2 entre ellas:
- X-Y: 0.25
- Y-Z: 0.25
Una posible representación mediante diagramas de Venn de estos valores de R2 sería la siguiente:
Cómo se puede apreciar en dicho diagrama, a pesar de que hay una correlación (r = 0.50) entre X e Y y Z e Y, los rectángulos de X y Z no se solapan, indicando una ausencia de correlación entre ellas. En otras palabras, que dos variables (X y Z) se relacionen con una misma variable (Y), no implica que esas dos tengan que presentar una correlación. Este es el principal error de interpretación que se comete con respecto a la transitividad de las correlaciones. Volviendo al ejemplo inicial sobre la prensión manual, la información facilitada en dicho enunciado impide saber si realmente la prensión manual se relaciona con la discapacidad del hombro, se requieren más datos. Pero… ¿Qué datos?
Tenemos dos opciones, una buena y adecuada y otra mala que solo utilizaré para ejemplificar la propiedad de transitividad aplicada a las correlaciones. La opción buena es la obvia, si se quiere estimar la correlación entre dos variables, lo adecuado es medir ambas y analizar directamente dicha correlación, no hacer estimaciones indirectas basadas en la transitividad.
Como ya he comentado, no tiene porque haber transitividad de una correlación de Pearson. Sabemos que la correlación entre X y Z se encuentra dentro del siguiente intervalo basado en las correlaciones entre X e Y y Z e Y:
$$r_{xy}r_{yz} – \sqrt{(1- R^2_{xy})(1-R^2_{yz})} \leq r_{xz} \leq r_{xy}r_{yz} + \sqrt{(1- R^2_{xy})(1-R^2_{yz})}$$
De esta fórmula podemos extraer varias conclusiones. Una primera es que, si y solo si rxy = ryz = 0, entonces rxz puede tomar todo el rango de valores posibles, es decir, de -1 a +1.
Otra conclusión sería que, si y solo si rxy = ryz (sin tener en cuenta el signo de la correlación, es decir, su valor absoluto), entonces puede existir una correlación perfecta entre X y Z, es decir rxz = 1 o rxz = -1, cuyo signo dependerá de los de las otras dos relaciones. Si nos imaginamos esta situación con los diagramas de Venn, tiene más sentido, pues que haya una relación perfecta (positiva o negativa) entre X y Z, implica que ambos rectángulos estarían superpuestos de manera perfecta y por tanto, el solapamiento de ambos con la variable Y sería el mismo, es decir, R2xy = R2yz.
Por otro lado y aunque no tan fácilmente reconocible como esa primera conclusión, de dicha fórmula también podemos concluir que, si rxy > 0, y ryz > 0, entonces rxz > 0 si y solo si:
$$R^2{xy} + R^2{yz} > 1$$
Es decir, habría transitividad de la correlación positiva solo cuando se cumpla esa situación. De forma más generalista, solo cuando la anterior situación se cumpla, la correlación entre X y Z no podrá ser igual a cero, en el resto de casos, puede existir una correlación igual a cero entre ambas variables. Nuevamente, si pensamos en los diagramas de Venn, podemos apreciar esa condición más fácilmente. El área del rectángulo de Y es igual a 1, de manera que si la suma de las áreas solapadas de X y Z con Y son superiores a 1, eso implica que los rectángulos de X y Z han de estar solapados también. A continuación muestro un ejemplo de diagrama de Venn donde casi hay solapamiento entre X y Z, con solo un 5% de la variabilidad de Y sin explicar. Si X y Z explicasen más porcentaje de la variabilidad de Y, es decir, si juntásemos más dichos rectángulos, acabarían por solaparse.
Este punto es importante, pues incluso con correlaciones altas entre X e Y y Z e Y, puede darse una correlación de cero entre X y Z. Por ejemplo, asumiendo que rxy = ryz, entonces la correlación máxima que permitiría la posibilidad de que existiera una correlación de cero entre X y Z sería:
$$r_{xy} = r_{yz} = \sqrt 50 = 0. 7071$$
Es decir, podemos tener hasta una correlación entre X e Y y entre Z e Y de 0.7071 y ello no tendría que implicar que hubiera una correlación entre X y Z. Con la fórmula inicial de los intervalos del coeficiente de correlación entre X y Z en función de rxy y ryz, podemos calcular la correlación mínima que podríamos esperar entre X y Z, así como también evaluar en que situaciones es plausible una ausencia de correlación entre ambas variables.
Implicaciones de la malinterpretación de la transitividad de las correlaciones
¿Por qué es importante conocer como se comportan las correlaciones con respecto a la transitividad? Para no cometer errores grandes y, en mi experiencia por lo que he podido apreciar, encadenados, de interpretaciones y asunciones. Un ejemplo de malinterpretación común sería el siguiente:
«Estamos buscando artículos y nos encontramos con uno que ha visto que hay una correlación de 0.7 entre la fuerza máxima prensil y la fuerza isométrica máxima de rotación externa de hombro, nos acordamos que hace unos meses leímos otro estudio que había encontrado una correlación de 0.67 entre la fuerza isométrica máxima de rotación externa y la discapacidad del hombro, y en base a ambos estudios, decidimos empezar a evaluar y tratar la fuerza prensil en clínica en sujetos con patología dolorosa del hombro.»
Otra opción sería que, en función de esos dos estudios, decidiéramos hacer un ensayo clínico orientado a trabajar la fuerza prensil para mejorar la discapacidad en sujetos con dolor relacionado con el manguito rotador, o que decidiéramos no evaluar en un transversal la fuerza de rotación externa porque requiere de un dinamómetro que es más caro y midiéramos en su lugar la fuerza prensil, asumiendo que también se relaciona con la discapacidad. Todas estas decisiones son erróneas y pueden llevar a errores muy grandes, tanto en la práctica clínica como en investigación. Cuando he comentado que en mi experiencia, son errores encadenados, es porque muchas veces he observado que, en lugar de molestarnos en evaluar directamente las correlaciones, las asumimos presentes por transitividad, una tras otra, aceptando algunas como verdades ya comprobadas, y guiando líneas de investigación durante años y años, en base a un error conceptual de estadística.
Por último, otro ejemplo donde también aprecio se malinterpreta notoriamente la transitividad es en las pruebas de valoración. Tendemos a buscar métodos más baratos para evaluar determinados parámetros en nuestros sujetos en investigación, porque se supone tendrán mayor aplicabilidad clínica. Si bien esto es lo deseable, no siempre es posible. En esta búsqueda de métodos más baratos, pecamos de la falacia de la transitividad. Cuando se realiza un estudio de estas características, se suele comparar el nuevo método con uno considerado «gold standard» para evaluar su validez, calculándose la correlación entre las mediciones tomadas con ambos métodos. Mucha gente asume que por ejemplo, un valor de correlación de Pearson de 0.70, sería indicativo de buena validez, y concluyen que por tanto, el nuevo método podría implementarse en la práctica clínica e investigación, ahorrando costes. El motivo subyacente en la gran mayoría de casos, sea consciente o no quien realiza el mismo, es la aceptación de la transitividad, mejor dicho, la malinterpretación de la misma.
Si aceptamos una correlación de 0.70 entre ambos métodos de medición, necesitaríamos que se diera una correlación de 0.72 entre el gold standard y otra variable de interés, para que empezase a haber transitividad de dicha correlación hacia el nuevo método de medición. Por ejemplo, si asumimos que el gold standard presenta una correlación de 0.85 con otra variable, la correlación estimada del nuevo método de medición con dicha variable, por transitividad, sería de 0.219. ¿Podemos por tanto usar indistintamente el nuevo método de medición? La respuesta es, en función de solo esta información, no. Pues ya hemos visto que la transitividad no justificaría dejar de usar el gold standard, pues perderíamos casi toda la correlación con la otra variable de interés. Esto no implica que no pudiera darse una relación más alta entre el nuevo método y dicha variable, simplemente que, por transitividad, no pasaría y por tanto un razonamiento basado en la misma, no se sostiene.
A continuación te dejo un segundo test, con el fin de que puedas evaluar el conocimiento que has adquirido con la presente entrada y si ha mejorado tu capacidad de interpretación de literatura científica:
Conclusiones
Las correlaciones no son transitivas, la posibilidad de presencia o no de transitividad depende de la magnitud y dirección de las correlaciones. No debemos caer en el error de inferir asociaciones por transitividad, sin haberlas evaluado de manera directa, pues puede llevarnos a cometer errores cruciales tanto en investigación, como en la práctica clínica.
Asunciones: Normalidad En esta entrada se recoge una breve explicación de la tan aclamada asunción de normalidad, haciendo hincapié en a que …
Análisis de la "normalidad": Gráficos QQ y PP En esta entrada se recoge una explicación de los gráficos QQ y PP, útiles …
Interpretación de la relevancia clínica: El mal uso de la mínima diferencia clínicamente relevante (I) En esta entrada se proporciona una breve …
Calculadora Muestral: Ensayos Aleatorizados (diferencia ajustada ancova – precisión) En esta entrada se recoge una breve guía práctica de recomendaciones para calcular …